Lecture 16. Light scattering and absorption by atmospheric
particulate. Part 4: Scattering and absorption by non-spherical
particles: DDA and FDDA methods. Examples.

Objectives:
1. Basics physics of dipole interactions.

2. Outline of the DDA method.

3. Effects of particle nonsphericity on main aerosol optical characteristics.

Recommended Readine:

Stephens G. Remote sensing of the lower atmosphere. 1994,

Chapter 5.2



1. Basics physics of dipole interactions.

Recall Lecturel 3: molecular scattering can be described by considering a molecule as the

single isolated dipole (Rayleigh limit: x << 1)

In the Rayleigh limit, perpendicular and parallel components of scattered intensities in
the far-field are given by Eq.[13.22]
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where « is the polarizability of the particle and it relates to the refractive index via

Lorentz-Lorentz formula (also known as Clausius-Mossotti formula) as (Eq.[13.28])
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Rayleigh-Gans limit is z(m — 1) <« | (z < | is not required). In Rayleigh-
Gans limit, the field inside the particle is the same as the incident. The field 1s not
reflected by the particle and there is no phase difference across particle.

Conceptual model: A particle may be divided into “dipoles™ of size 2mwd/\ < 1.



EM field of two isolated dipoles:

Figure 16.1 Two isolated dipoles scatter the incident EM field into all directions.
(Stephens, 1994). An observer at point P will measure the superposition of scattered
waves of two dipoles, propagating into the direction of observation (i.e., in scattering
angle ©). The interference of these two waves depends on the phase difference caused by

the relative path difference.



The phase difference between two scattered waves at point P is the difference in path

length of two waves

Ad =x(l-cosO) [16.1]
where X is the size parameter. Thus the scattered field is
E,,~E expl —id)+ E,exp( —i(d +Ad)) [16.2]
and the detected intensity (averaged over the full cycle)
I.,,~El+ E; +2E,E,cos( Ad) [16.3]
If Er=E>
Ad=m, 3m, 5m ... => fields cancel (out of phase)
A0 =0,2m, 4m,... => fields reinforce (in phase)

NOTE: The forward scattering waves are always in phase.



¢ In general case for nonspherical particle represented by many dipoles, the phase
difference depends on both the distance between dipoles and the direction of
scattering (except for © =0", i.e. forward scattering) == the scattered radiation is a
complex superposition of individual scattered waves of many different phase
differences.

Scattered waves from dipoles are in phase for forward direction © = 0, giving

constructive interference — forward peak in phase function.

Destructive and constructive interference alternates as © increases — oscillations
in phase function. More oscillations for larger particle.
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e The larger the particle. the higher intensity scattered in the forward direction and

the greater the forward to backward asymmetry.
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(a) Excited by an incident wave, two dipoles scatter in all directions. In the forwarrd direction.
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the two waves are exactly in phase regardless of the separation of the dipoles. (b) The greater

the number of dipoles (larger the particle). the more they collectively scatter towards the forward

direction. [Stephens, 1994; Fig. 58]
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Figure 160.2 Intensity of dipoles lied on one line at the distance of one wavelength and

interacted with each other (Bohren, 1987).



e In addition to phase differences, the scattered field is affected by interaction of
dipoles with each other.
Consider a particle composed of many dipoles. The scattered field 1s incident field plus
the fields produced by each dipole

E_=E, + Z E figoles [16.4]

The dipole moment of j-th dipole 1s

P;=E e [16.5]

where o 1s the polarizability of the dipole and £, ;18 he field acting on the dipole
which is the superposition of incident field and the fields caused by other dipoles. Thus

P; = rf_.r'[‘;"..u.-.-._;' - Z -"I_ﬁ.- Pyl [10.6]
=k

where — Z A 4 py 1s the contribution from the electric field at j-th dipole from the k-th
ik

dipole.

NOTE: Solving Eqs.[16.4]-[16.6] for all p; lies the basis of the Discrete Dipole

Approximation (DDA) method.



2. Outline of the DDA method.

DDA (Discrete Dipole Approximation) method enables computation of optical

properties of arbitrary shaped. inhomogeneous, and anisotropic particles.

A numerical method for scattering from any shape particle that is not too large
(z < 5). See review paper by Draine and Flatau, J. Opt. Soc. Am. A, 11, 1491,

NOTE: DDSCAT is a FORTRAN implementation of the DDA technique. The code and

user guide are openly available at http://www.astro.princeton.eduw/~draine/DDSCAT.html

Basic principles: In DDA, the particle is replaced by an array of polarizable points

(dipoles), and then the electromagnetic scattering problem for an incident periodic wave
interacting with this array of point dipoles is solved exactly.

For a particular incident E field, the linear system may be solved for the dipole moments py.
The far field scattering properties are calculated from the py.
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Figure 16.3 A spherical particle represented by individual dipoles.



electric field due to
»~ dipole moment

dipole

Zj-—dipole moment

far-field
electric

field

g

AVAVA

incident electric
field

Q&

\

The Discrete Dipole Approximation divides a particle up into many dipoles which are small com-
pared to the wavelength. The oscillating electric field produced by each dipole depends on the
dipole moment. The dipole moment depends on the applied electric field from the incident field
and other dipoles and the dielectric properties of the dipole. The far-field electric ficld 1s a sum of

the dipole fields from all the dipoles.



Advantages: DDA can be applied to particles having any shape and composition (i.e.,

homogeneous or aggregates)

Applicability and limitations of DDA

DDA is completely flexible regarding the geometry of a particle, being only limited by
the need to use an interdipole distance  small to satisfy
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where m is the complex refractive index of the particle.
[f a particle of volume V is represented by an array of N dipoles, located on a cubic

lattice with lattice spacing d. then

V = Nd’ [16.8]
The size of the particle can be characterized by the “effective radius™ aggy as
~STr ] [/3
A =(3V /4r) [16.9]

1.€., dgris the radius of an equal volume sphere.
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Then the size parameteris XY =—d 4

A

and it can be related to N as
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The number of dipoles N ~ @, . so as particle size increases, the very large number of

dipoles are required. Therefore, DDA is limited by the size parameter of about 15 (or the

number of dipole is up to N=10%.
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Fig. 16.4
Scattering and
absorption
efficiencies for a

m~1.93+0.01i sphere with
(e=1.7688-+0.0266i) m=1.33+001i.

The upper panel
shows exact
calculation from
Mie, whereas the
middle and
lower panels
show fractional
errors in Q, and
Q., calculated
with DDSCAT
for different
numbers of
dipoles N
(Draine and
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3. Outline of the FDTD method.

Finite Difference Time Domain, FDTD, method enables calculations of optical

properties of particles of complicated geometries and compositions.

Basic principles: FDTD solves the Maxwell’s curl equations (first two equations in

eq.[14.1] ) in the time-domain by introducing a finite difference analog. The space
containing a scattering particle is dicretized by using a grid mesh. The existence of the
particle is represented by assigning suitable electromagnetic constants in terms of
permittivity, permeability and conductivity (depending on particle properties) over the

grid points.



artificial boundary

Advantages: FDTD can be applied to particles having any shape and composition.

Limitations: Known implementation problems (for instance, staircasing effect - due to

selection of Cartesian mesh grid)

Limited range of size parameters (up to x =15-20)



~ Applications

Ice crystals:

Yang and Liou: FDTD for size parameter ~15 and ray-tracing (for x =15)

Dust particles:
Mishchenko et al.: T-matrix applied to a mixture of ellipsoids
Kalashnikova and Sokolik (2002): DDA applied to SEM data of dust particles

{see Lecture 16)

Soot aerosol:

Mackowski et al.: modified T-matrix applied to fractal-like sphere clusters.



How to define an equivalent sphere:

Extinction Efficiency
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size parameter kL



4. Effects of particle non-sphericity on
main aerosol optical characteristics.
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Figure 16.5 Differences in the single scattering albedo between spherical and

nonspherical particles of equal volume calculated with DDA. Nonspherical shapes: (1)
ellipsoid, (2jeylinder, (3) hexagon, (4) rectangular, (5) tetrahedron, {(6) «8) random 1, 2

and 3, respectively. (From Kalashnikova and Sokolik, 2002).
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Compare to a sphere, the nonspherical particle of same composition and volume

can result in lower or higher values of the single scattering albedo.
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Figure 16.5 Scattering phase function calculated with DDA for a log-normal size

distribution with rg= 0.5 pm, at A=0.5 um.m = 1.51 +10.002 (From Kalashnikova and

Sokolik, 2002).



* Nonspherical particles cause lower scattering in the backscattering directions but
larger forward scattering relative to equal volume spheres of the same

composition.

Henvey-Greenstein scattering phase function is often used in radiative transfer

calculations and is defined as
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where g is the asymmetry parameter.
NOTE: Henyey-Greenstein scattering phase function result in lower forward and
backward scattering relative to the scattering phase function of spherical and

nonspherical shapes.



